

Country Waste Profile Report for CUBA

Reporting Year: 2007

For guidance on reading Country Waste Profile Reports, please refer to the following internet based document:

http://www-newmdb.iaea.org/help/profiles9/guide.pdf

For further information, please contact the Responsible Officer via e-mail: NEWMDB@IAEA.org

Waste Classification Schemes

Country: CUBA Reporting Year: 2007

Waste Class Matrix: IAEA Def. This country does use the IAEA Scheme: No

Description: The Agency's standard matrix

	Distribution %			
Waste Class Name	VLLW	LLW	ILW	HLW
VLLW	100.0	0.0	0.0	0.0
LLW	0.0	100.0	0.0	0.0
ILW	0.0	0.0	100.0	0.0
HLW	0.0	0.0	0.0	100.0

Comment # 171: Waste Classification Scheme

The waste classification scheme defined in Cuban National Regulation (Regulation for the Safe Management of Radioactive Waste, Res 35/2003) is similar to the IAEA Def matrix. But there is not high level waste in Cuba.

Definition of «unprocessed waste» and «processed waste»:

This country uses the IAEA standard definition:

	as-generated waste	processed for handling	processed for storage	processed for disposal
Jnprocessed means:	х			
Processed means:		х	x	х

Groups Overview

Country: CUBA Reporting Year: 2007

Reporting Group:	CPHR
Inventory Reporting Date:	December 2007
Waste Matrix Used:	IAEA Def.
Description:	Center for Radiation Protection and Hygiene

Site Name	Facility Name	Facilities Defined		ed
Repository	Repository			disposal
RWMF	WPF	processing		
	WSF		storage	

Comment # 180: Reporting group

The Center for Radiation Protection and Hygiene (CPHR) is the institution responsible for radioactive waste management in Cuba

International Atomic Energy Agency

Page 1/2

NEWMDB Report

Site (Structure): Repository

Country: CUBA Reporting Year: 2007

Full Name: Repository for final disposal of radioactive waste

Location: Central region of Cuba

Description:

Official Website:

License Holder(s):

Comment # 230: Repository

The repository was planned for the final disposal of low and intermediate level radioactive wastes from Juragua Nuclear Power Plant and nuclear applications. The construction of the NPP was stopped, as well as the studies regarding this repository.

Waste management facilities that are located at this site:

Site (Structure): Repository

Country: CUBA Reporting Year: 2007

Facility:	Repository	
Description:	Repository for final disposal of radioactive wastes	

Disposal part of facility Repository

The following shows disposal status for waste classes and SRS.

Waste Class	Actual	Planned
VLLW	No	No
LLW	No	Yes
ILW	No	Yes
HLW	No	No

List SRS?	No
List UMMT?	No

Туре:	engineered near surface		
Facility is modular?	Yes		
Capacity existing (m3):	0	Capacity planned (m3):	12300

Depth (m):	15	crystalline rock (granite)
		(3)

Phase Name	Start Year	End Year	Estimate
planning and/or concept assessment	1990	1994	False
site selection	1994	1997	False

International Atomic Energy Agency

Page 1/2

NEWMDB Report

Site (Structure): RWMF

Country: CUBA Reporting Year: 2007

Full Name: Radioactive Waste Management Facility

Location: Managua, Ciudad de la Habana

Description:

Official Website:

License Holder(s): Center for Radiation Protection and Hygiene, Calle 20 No. 4113 Playa C. Habana

Comment # 181: RWMF

Radioactive Waste Management Facility belongs to the Center for Radiation Protection and Hygine, which is the License

Holder

Waste management facilities that are located at this site:

Facility:	WPF	
•	Waste Processing Facility, includes compaction of solid waste, immobilization by cementation of liquid waste and non compactible solids and conditioning of spent sealed sources.	

Processing part of facility WPF

The following shows processing status for waste classes and SRS.

Waste CLass	Actual	Planned
VLLW	No	No
LLW	No	No
ILW	No	No
HLW	No	No

Type:	Treatment, Conditioning
Year opened:	1999

Site (Structure): RWMF

Country: CUBA Reporting Year: 2007

Facility:	WSF	
	Waste storage facility, includes conditioning and non conditioning radioactive waste storage in an above ground construction. Disused sealed sources are also stored in this facility.	

Storage part of facility WSF

The following shows storage status for waste classes and SRS.

Waste Class	Actual	Planned
VLLW	No	No
LLW	Yes	Yes
ILW	Yes	Yes
HLW	No	No

List SRS?	Yes
List UMMT?	No

Capacity:	Sufficient capacity for at least 10 years is available.

Types of Storage Units

Storage Unit Name	Type Name	Year Opened	Closed?	Full?	Modular?	Contains SRS?
RW Storage	silo	1990	No	No	No	Yes

Comment # 7242: Storage facility

The Storage facility contains conditioning and non conditioning radioactive waste and disused sealed sources.

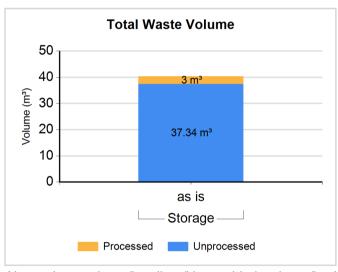
Stock of waste as at December 2007

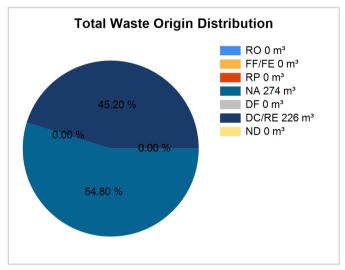
Country: CUBA Reporting Year: 2007

Site Name: RWMF

Full Name: Radioactive Waste Management Facility

Inventory Reporting Date: December 2007 Waste Matrix Used: IAEA Def.


Comment # 181: RWMF


Radioactive Waste Management Facility belongs to the Center for Radiation Protection and Hygine, which is the License

Holder

Waste Inventory

Est=distribution is an estimate, Proc.=Is the waste processed (Yes/No)? RO=Reactor Operations, FF/FE=Fuel Fabrication/Fuel Enrichment, RP=Reprocessing, NA=Nuclear Applications, DF=Defence, DC/RE=Decommissioning/Remediation, ND=Not Determined

Note: where volume "as dispo" is provided, volume "as is" is used in the graph instead.

Waste Class: LLW

Waste Class Name	Location / Facility	Proc	Est.	Volume "as is" (m³)	Volume "as dispo" (m³)	RO %	FF/FE %	RP %	NA %	DF %	DC/RE %	ND %
LLW (liquid)	Storage	N	N	2.980	2.980	0.00	0.00	0.00	100.00	0.00	0.00	0.00
LLW (solid)	Storage	N	N	29.860	29.860	0.00	0.00	0.00	32.00	0.00	68.00	0.00
LLW (solid)	Storage	Υ	N	2.800	2.800	0.00	0.00	0.00	100.00	0.00	0.00	0.00

Waste Class: ILW

Waste Class Name	Location / Facility	Proc	Est.	Volume "as is" (m³)	Volume "as dispo" (m³)	RO %	FF/FE %	RP %	NA %	DF %	DC/RE %	ND %
ILW (solid)	Storage	N	N	4.500	4.500	0.00	0.00	0.00	42.00	0.00	58.00	0.00
ILW (solid)	Storage	Υ	N	0.200	0.200	0.00	0.00	0.00	0.00	0.00	100.00	0.00

Processing - Treatment method(s)

	Status							
Method	Planned R&D Current practice method Pas program use over the last 5 years							
Compaction	N	N	Decrease	N				

Stock of waste as at December 2007

Country: CUBA Reporting Year: 2007

Processing - Conditioning method(s)

	Status							
Method	Planned	R&D program	Current practice method use over the last 5 years	Past Practice				
Cementation	Y	N		N				
Containerization	N	N	Same	N				

Spent Sources <=30 years in Storage

Nuclide	Number of Sou	rces/Total Activity of	Sources (GBq)	С	u	С	Total	Decay Date
	Group I less than or equal 4GBq	Group II m ore than 4GBq but less than or equal 4E+4GBq	Group III more than 4E+4GBqq	o n d	n c o	a t	Activity for all Groups (GBq)	
	num/activity	num/activity	num/activity		n d			
Ba-133	6			Υ	N	Υ	1.500E-002	
	1.500E-002							
Cf-252	6			N	Υ	Υ	6.200E-001	
	6.200E-001							
Co-60			4	Υ	N	Υ	1.300E+006	
			1.300E+006					
Co-60		6	14	N	Υ	Υ	3.910E+006	
		2.100E+005	3.700E+006					
Co-60	43			Υ	N	Υ	8.100E+001	
	8.100E+001							
Co-60	2	14		N	Υ	Y 9.703E	9.703E+003	
	2.600E+000	9.700E+003						
Co-60	14	27		Υ	N	Υ	1.350E+003	
	5.000E+001	1.300E+003						
Co-60		9		N	Υ	Υ	4.800E+002	
		4.800E+002						
Co-60	17	1		Υ	N	Υ	5.200E+001	
	1.500E+001	3.700E+001						
Co-60	9	2		N	Υ	Υ	6.300E+001	
	1.700E+001	4.600E+001		1				

Stock of waste as at December 2007

Country: CUBA Reporting Year: 2007

Co-60	188	1	Y	N	Υ	2.500E+001		
	1.200E+001	1.300E+001						
Co-60	61		N	Υ	Υ	8.400E-001		
	8.400E-001							
Cs-137		5	Y	N	Y	Υ	Υ	5.600E+004
-		5.600E+004						
Cs-137		57	Y	N	Υ	1.200E+004		
		1.200E+004						
Cs-137		20	N	Υ	Υ	3.500E+003		
		3.500E+003						
Cs-137	60	259	Y	N	Υ	4.610E+004		
	1.000E+002	4.600E+004						
Cs-137	4	1	N	Υ	Υ	1.968E+002		
	6.800E+000	1.900E+002						
Cs-137	133	233	Y	N	Υ	1.216E+004		
	1.600E+002	1.200E+004						
Cs-137	8	5	N	Υ	Υ	9.000E+001		
	1.500E+001	7.500E+001						
Cs-137	92		Y	N	Υ	5.000E+000		
	5.000E+000							
Cs-137	15		N	Υ	Υ	7.700E-001		
	7.700E-001							
Eu-152	2		Y	N	Υ	4.400E-004		
	4.400E-004							
Eu-154	2		Y	N	Υ	2.100E+000		
	2.100E+000							
H-3		18	Y	N	Υ	1.200E+002		
		1.200E+002						
H-3	9		N	Υ	Υ	1.700E-003		
	1.700E-003							

Stock of waste as at December 2007

Country: CUBA Reporting Year: 2007

•					\ \ /	4 5005 000	
2			Y	Y IN	N Y	1.500E-003	
1.500E-003							
2			Υ	N	Υ	4.600E+000	
4.600E+000							
1	1		N	Υ	Υ	1.700E+001	
2.000E+000	1.500E+001						
15			Υ	N	Υ	3.000E-003	
3.000E-003							
409			N	Υ	Y	7.800E-001	
7.800E-001							
70			Υ	N	Υ	2.000E-003	
2.000E-003							
212			Υ	N	Υ	3.800E+002	
3.800E+002							
35			N	Υ	Υ	3.200E+001	
3.200E+001							
575	2		Υ	N	Υ	2.420E+002	
1.200E+001	2.300E+002						
644			N Y	Υ	Y	2.600E+000	
2.600E+000			1				
	2 4.600E+000 1 2.000E+000 15 3.000E-003 409 7.800E-001 70 2.000E-003 212 3.800E+002 35 3.200E+001 575 1.200E+001 644	1.500E-003 2 4.600E+000 1 1 2.000E+000 1.500E+001 15 3.000E-003 409 7.800E-001 70 2.000E-003 212 3.800E+002 35 3.200E+001 575 2 1.200E+001 2.300E+002 644	1.500E-003 2 4.600E+000 1 1 1 2.000E+000 1.500E+001 15 3.000E-003 409 7.800E-001 70 2.000E-003 212 3.800E+002 35 3.200E+001 575 2 1.200E+001 2.300E+002 644	1.500E-003 2 4.600E+000 1 1 1 1 2.000E+000 1.500E+001 15 3.000E-003 409 7.800E-001 70 2.000E-003 212 3.800E+002 35 3.200E+001 575 2 Y 1.200E+001 2.300E+002 644 N	1.500E-003 2 4.600E+000 1 1 1 1 N Y 2.000E+000 1.500E+001 15 3.000E-003 409 N Y N 7.800E-001 70 2.000E-003 212 3.800E+002 35 N Y N Y 1.200E+001 575 2 Y N Y N Y	1.500E-003 2 4.600E+000 1 1 1 1 N Y X 2.000E+000 1.500E+001 15 3.000E-003 409 7.800E-001 70 2.000E-003 212 Y N Y N Y 3.800E+002 35 N Y Y N Y 1.200E+001 N Y N Y N Y N Y N Y N Y N Y N Y N	1.500E-003 2

Spent Sources > 30 years in Storage

Nuclide	Number of Sources/Total Activity of Sources (GBq)		С	u	С	Total	Decay Date
	Group I less than or equal 2 GBq	Group II more than 2GBq	o n	n c	a t	Activity for all Groups	
	74	-324	d	0		(GBq)	
	num/activity	num/activity		n d			
Am-241	6		Υ	N	Υ	4.100E+000	
	4.100E+000						
Am-241	4	9	Υ	N	Υ	5.440E+001	
	7.400E+000	4.700E+001					

Stock of waste as at December 2007

Country: CUBA Reporting Year: 2007

Am-241	8465		Y	N	Υ	1.700E+001
	1.700E+001					
Am-241	12643	1	N	Υ	Υ	1.160E+001
	4.200E+000	7.400E+000				
Am-241	2	20	N	Υ	Υ	1.701E+003
	1.100E+000	1.700E+003				
Am-241	6		N	Υ	Υ	1.200E+001
	1.200E+001					
Am-241		2	N	Υ	Υ	2.200E+002
		2.200E+002				
C-14	6		N	Υ	Υ	8.200E-004
	8.200E-004					
C-14	5		Y	N	Y	2.800E-005
	2.800E-005					
I-129	2		Y	N	Υ	4.500E-006
	4.500E-006					
Ni-63	4		Y	N	Y	1.600E+000
	1.600E+000					
Pu-238	7		N	Υ	Υ	7.100E+000
	7.100E+000					
Pu-238	12		N	Υ	Υ	8.500E+000
	8.500E+000					
Pu-238	1	4	N	Υ	Υ	7.212E+002
	1.200E+000	7.200E+002				
Pu-238	2		N	Y	Υ	2.400E+000
	2.400E+000					
Pu-239	36		N	Υ	Υ	1.900E-002
	1.900E-002					
Pu-239		5	N	Υ	Y	1.300E+003
		1.300E+003				

Stock of waste as at December 2007

Country: CUBA Reporting Year: 2007

Ra-226	1036	Υ	N	Υ	1.800E+002	
	1.800E+002					
Ra-226	38	Υ	N	Y	8.800E-001	
	8.800E-001					

Multiple Nuclides SRS in Storage

Nuclide	Activity of Sources (GBq)	cond	uncond	cat	Decay Date
Am-241	1.000E-004	Y	N	Y	
Sr-90	1.000E-004	Y	N	N	

Regulators

Country: CUBA Reporting Year: 2007

Name:	CNSN
Full Name:	National Center for Nuclear Safety
Divison:	
City or Town:	Havana
Main Website:	

Comment # 7240: Establishment of Regulatory Authority

The Decree-Law 207:"On the use of nuclear energy" establishes, in the article 4 that the Minister of Science Technology and the Environment (CITMA) is responsible for supervising, implementing and controlling the Government policy regarding the use of nuclear energy. The regulation and control for the safe use of nuclear energy and for the control of nuclear materials is implemented through the National Center for Nuclear Safety (CNSN).

Regulations / Laws

Country: CUBA Reporting Year: 2007

Name:	DL-207					
Title or Name:	On the Use of Nu	On the Use of Nuclear Energy				
Reference Number:	Decree - Law 207	Decree - Law 207				
Date Promulgated or Proclaimed:		2/17/2000	Law			

Comment # 289: Decree Law 207 and HLW

Although there is not HLW at present in Cuba, the Decree Law 207 includes spent fuel.

Name:	Res-121					
Title or Name:	Regulation for the	Regulation for the Safe Transport of Radioactive Materials				
Reference Number:	Resolution 121/2	Resolution 121/2000 CITMA				
Date Promulgated or Proclaimed:		12/15/2000	Regulation			

Name:	Res-25					
Title or Name:	Regulation for th Radiation	Regulation for the Authorization of Practices Associated with the Use of Ionizing Radiation				
Reference Number:	Resolution 25/98	Resolution 25/98				
Date Promulgated or Proclaimed:		7/6/1998		Regulation		

Name:	Law 81					
Title or Name:	Law 81 on the Environment					
Reference Number:	Law 81	aw 81				
Date Promulgated or Proclaimed:		7/11/1997	Law			

Name:	Res-35					
Title or Name:	Regulation for the	Regulation for the safe management of radioactive waste				
Reference Number:	Resolution 35 / 2	Resolution 35 / 2003 CITMA				
Date Promulgated or Proclaimed:		3/10/2003	Regulation			

Name:	Cuban BSS					
Title or Name:	Cuban Basic Saf	Cuban Basic Safety Standards				
Reference Number:	Join Resolution C	Join Resolution CITMA MINSAP				
Date Promulgated or Proclaimed:		1/4/2002		Regulation		

Regulations / Laws

Country: CUBA Reporting Year: 2007

Name:	Guide01/04			
Title or Name:		itional Clearance Levels for solid materials with low radioactive content and d and gas discharges to the environment		
Reference Number:	Resolution 01/20	Resolution 01/2004 CNSN		
Date Promulgated or Proclaimed:		1/9/2004		Regulation

Comment # 9778: Regulation Guide01/04

This is a guidance document that supports the Regulation for Radioactive Waste Management (Resolution 35/2003). The criteria for unconditional clearance, as well as unconditional clearance levels are contained in this guide, as they are not included in the regulation

Name:	Guide02/04			
Title or Name:	Guidance for the implementation of the Regulation for the Safe Transport of Radioactive Materials			
Reference Number:	Resolucion 2/200	Resolucion 2/2004 CNSN		
Date Promulgated or Procl	omulgated or Proclaimed: 1/15/2004 Regulation		Regulation	

Name:	Personnel			
Title or Name:		Regulation for selection, training and authorization of personnel executing practices associated with the use of ionizing radiation		
Reference Number:	Joint Resolution	Joint Resolution CITMA MINSAP		
Date Promulgated or Procl	aimed:	3/24/2004	Regulation	

Name:	Res-58		
Title or Name:	Prohibition on the importation of and other regulations for the use of lighting rods		
Reference Number:	Resolution 58/2003 CITMA		
Date Promulgated or Procl	aimed:	7/22/2003	Regulation

Name:	Res-96		
Title or Name:	Regulation for the	ne import, distribution, assembly and use of smoke detectors	
Reference Number:	Resolution 96/2003 CITMA		
Date Promulgated or Proclaimed:		2/16/2004	Regulation

Regulations / Laws

Country: CUBA Reporting Year: 2007

Name:	Res-6			
Title or Name:	Regulation for the	e recognition of competence of th	e services for radiation safety	
Reference Number:	Resolution 6/200	Resolution 6/2004 - CITMA		
Date Promulgated or Proc	laimed:	1/13/2004	Regulation	

Name:	DL-208			
Title or Name:	On the National S	System for accounting and control	of nuclear materials	
Reference Number:	Decree 208	Decree 208		
Date Promulgated or Proclaimed:		5/24/1996	Law	

Name:	Res-62		
Title or Name:	Regulation for the accounting and control of nuclear materials		
Reference Number:	Resolution 62/96 CITMA		
Date Promulgated or Procl	aimed:	7/12/1996	Regulation

Name:	ScrapMetal			
Title or Name:	Regulation for the control on the import and export of scrap metal			
Reference Number:	Joint Resolution	oint Resolution CITMA-MINCEX		
Date Promulgated or Procl	oclaimed: 4/29/2002 Regulation		Regulation	

Milestones

Country: CUBA Reporting Year: 2007

Start Year or Reference Year: 2007 End Year: Description of Milestone: The Ra-226 disused radioactive sources were conditioned according to the IAEA recomendations Start Year or Reference Year: 2005 End Year: 2006 Description of Milestone: A National Technical Cooperation Project was developed with the IAEA. The objective was to improve waste management activities in the country, mainly at generator institutions. Start Year or Reference Year: 2005 End Year: Description of Milestone: A radiochemical laboratory at the International Center for Neurological Restoration (CIREN) was decommissioned. This laboratory used 14C for radiochemical basic research, but this practice concluded and the institution requested the release of this facility from regulatory control. Decommissioning services were provided by the CPHR. Start Year or Reference Year: 2004 2002 End Year: Description of Milestone: The Regulation for the Safe Management of Radioactive Waste was developed and implemented in March 2003. The Guide "Unconditional Clearance Levels for solid materials with low radioactive content and for liquid and gas discharges to the environment" implemented in 2004 Start Year or Reference Year: End Year: 2000 1999 Description of Milestone:

Development of the acceptance requirements for the wastes that will be collected from the users. Wastes are segregated at the point of origin in accordance with established classification.

Start Year or Reference Year: 1999 End Year: 2001

Description of Milestone:

Establishment of requirements and methods for low and intermediate level waste package acceptability in the storage facility.

Start Year or Reference Year: 1999 End Year: 2001

Description of Milestone:

The safety analysis of the present Storage Facility was carried out in order to evaluate the possibility to use it as long term storage. This analysis demonstrated that the facility needs to be upgraded

Milestones

Country: CUBA Reporting Year: 2007

Start Year or Reference Year:

Description of Milestone:

Decommissioning of a brachytherapy facility at the Oncology Hospital in Havana. This facility used Ra-226 sources for the brachytherapy service.

Start Year or Reference Year: 1999 End Year:

Description of Milestone:

The Waste Processing Facility (WPF) was put into operation. The facility was authorized for compaction of solid waste, conditioning of disused sealed sources (except Ra-226) and storage of radioactive waste and disused sealed sources. In 2006, because of deficiencies detected in the canalization system of the facility, the operations in the WPF were drastically reduced. Just few relevant operations were allowed, until the canalization system is repaired and upgraded. These activities started in 2006.

Start Year or Reference Year: 1997 End Year: 2002

Description of Milestone:

Establisment of a Quality Management System (QMS) for the radioactive waste management service, including all the stages: from collection of waste until storage as conditioned packages. The QMS was internally certified in the Center for Radiation Protection and Hygiene, according to the ISO 9001 Standard

Start Year or Reference Year: 1996 End Year: 1997

Description of Milestone:

Radiological characterization of unknown disused sealed sources

Start Year or Reference Year: 1996 End Year: 1997

Description of Milestone:

Chemical and radiological characterization of centralized, stored low-level liquid waste.

Start Year or Reference Year: 1995 End Year: 1997

Description of Milestone:

A National Technical Cooperation Project was developed with the IAEA. The necessary equipment for waste characterization, radiation protection and for quality and process control at the Waste Treatment and Storage Facility was supplied under this project. A number of personal were trained as part of this TC Project.

Start Year or Reference Year: 1988 End Year: 1991

Description of Milestone:

The construction of the Waste Processing and Storage Facility (WPSF). The WPSF was put into operation in 1988 and the centralized collection of radioactive waste was implemented around the country. The first two collections of disused sealed radioactive sources were carried out in 1988 and 1991.

Milestones

Country: CUBA Reporting Year: 2007

Start Year or Reference Year: 1986 End Year: 2004

Description of Milestone:

A facility in the Oncology Hospital, contaminated with Cs-137 was decommissioned. It was a former

brachytherapy facility that was used as storage facility for disused sealed sources at the beginning of eighties.

Start Year or Reference Year: 1985 End Year:

Description of Milestone:

First conditioning activities were carried out in the country. Solid and liquid radioactive waste generated in research activities were immobilized.

Country: CUBA Reporting Year: 2007

National Systems

Policy (Yes;Partially;No)

Q14 Has your Country implemented a national policy for radioactive waste management?

Yes

Comment # 233: Policy

The national policy for radioactive waste management is developed in accordance with the objective and principles established in the IAEA Safety Series No. 111-S-1.

There exist in the country the adequate capabilities for the safe management of radioactive waste:

The National Center for Nuclear Safety (The Regulatory Body) is responsible for the licensing and supervision of radioactive and nuclear installations and for the control of generated radioactive waste.

There is a Waste Processing and Storage Facility adequate to the amount and types of radioactive waste generated in the country.

The required regulatory infrastructure was created (including Laws and Regulations) for the control of radioactive waste.

The Center for Radiation Protection and Hygiene is responsible for centralized collection, transportation, treatment, conditioning and long term storage of radioactive waste, as well as for developing new waste conditioning and containment methods

Comment # 17720: Policies National Systems-Policy

The policy and strategies for radioactive waste management are being improved at present according to IAEA recommendations.

Strategies (Yes;Partially;No)

Q15 Has your country developed strategies to implement a national policy?

Yes

Comment # 234: Strategies

Radioactive waste management is one of the topics in the strategy of the Minister of Science Technology and Environment for the next five year. New research programmes will be developed with the aims of improving operational and regulatory capabilities for dealing with radioactive waste.

Country: CUBA Reporting Year: 2007

	Requirements	(Yes;Partially;No)
Q17	identified the parties involved in the different steps of radioactive waste management	Yes
Q18	specified a rational set of safety, radiological and environmental protection objectives	Yes
Q19	implemented a mechanism to identify existing and anticipated radioactive wastes	Yes
Q20	implemented controls over radioactive waste generation	Yes
Q21	identified available methods and facilities to process, store and dispose of radioactive on an appropriate time-scale	waste Partially
Q22	taken into account interdependencies among all steps in radioactive waste generation management	and Yes
Q23	implemented appropriate research and development to support the operational and regulatory needs	Yes
Q24	implemented a funding structure and the allocation of resources that are essential for radioactive waste management	Yes
Q25	implemented formal mechanisms for disseminating information to the public and for proconsultation	ublic Partially

Comment # 235: Interdependencies

The existing facility for radioactive waste management is adequate for the amount and types of generated radioactive waste. The wastes are segregated in the point of origin according to their characteristics and existing methods for treatment and conditioning.

Comment # 236: Resources

Final disposal of radioactive wastes is financed by the Government (who will centralized a budget provided by the licensed institutions), meanwhile the other steps of radioactive waste management are financed by the waste generators and the Center for Radiation Protection and Hygiene. Research programmes and regulatory activities are financed by the Minister of Science, Technology and Environment. The Government, through the Minister of Education, is responsible for guarantying the personal capabilities.

	Responsibilities (Complete;	Incomplete)
Q28	establish and implement a legal framework for the management of radioactive waste	Complete
Q29	establish or designate a regulatory body that has the responsibility for carrying out the regulatory function with regard to safety and the protection of human health and the environment.	Complete
Q30	define the responsibilities of waste generators and operators of waste management facilities	Complete
Q31	provide for adequate resources	Complete
Q33	enforce compliance with regulatory requirements	Complete
Q34	implement the licensing process	Complete
Q35	advise the government	Complete
Q37	identify an acceptable destination for the radioactive waste	Complete
Q114	comply with legal requirements	Complete

Country: CUBA Reporting Year: 2007

	Activities	(Yes;Partially;No)
Q43	perform safety and environmental impact assessments for radioactive waste manage facilities	ement Yes
Q44	ensure adequate radiation protection for workers, the general public and the environr	nent Yes
Q45	ensure suitable staff, equipment, facilities, training and operating procedures are ava to perform the safe radioactive waste management steps	ilable Yes
Q46	establish and implement a quality assurance programme for the radioactive waste generated or its processing, storage and disposal	Yes
Q47	establish and keep records of appropriate information regarding the generation, procestorage and disposal of radioactive waste, including an inventory of radioactive waste	
Q48	provide surveillance and control of activities involving radioactive waste as required be regulatory body	y the Yes
Q49	collect, analyze and, as appropriate, share operational experience to ensure continue safety improvements in radioactive waste management	ed Yes
Q50	conduct or otherwise ensure appropriate research and development to support operaneeds in radioactive waste management	tional Yes
	Clearance	(Yes;No)
Q128	Does your country have "clearly defined clearance levels based on radiological criteric policy statements that material below those levels can be recycled or disposed of with radioactive wastes"?	
Q129	Has your country ever used a "case-by-case" approach to clearing radioactive waste (excluding spent/disused sealed radioactive sources)?	s No
Q130	Has your country ever used clearance levels to dispose of, reuse or recycle radioactive waste as non-radioactive waste or as a non-radioactive resource (excluding spent/dissealed radioactive sources)?	

Attachment #1212: Questionaire

Guiadesechos.pdf

The Safety Guide 01/2004 of the Regulatory Authority establishes the unconditional clearance levels for solid materials with very low activity content and for release of liquids and gases to the environment

Country: CUBA Reporting Year: 2007

Disposal Facilities

	Licensing (Yes - All;Yes	- Some;No)
Q53	Environmental Assessment (EA)	Yes - All
Q54	Environmental Impact Statement (EIS)	Yes - All
Q55	Performance Assessment (PA)	Yes - All
Q56	Quality Assurance (QA)	Yes - All
Q57	Safety Assessment (SA)	Yes - All
Q59	If Quality Assurance is part of your Country's current, waste disposal facility licensing policy, does the QA Program conform to international standards (such as the ISO9000 series)?	Yes - All
Comme	ent # 239: Disposal facility - Policy	

Although there is not in operation any disposal facility in the country, these topics are included in environmental regulations and radiation safety regulations that apply to the management of radioactive wastes.

Q60 Does your Country have formal, documented waste acceptance criteria for its operating or proposed disposal facilities?

Comment # 240: Waste Acceptance Criteria

There is not any disposal facility for radioactive waste in operation in the country. Nevertheless the Waste Acceptance Criteria, Waste Package Specifications and Control Methods are defined for the operating storage facility.

	Post-Closure	(Yes;No)
Q61	Does your Country have any written policies to address the maintenance of records that describe the design, location and inventory of waste disposal facilities?	No
Q63	Does your Country have any written policies to address active institutional controls or passive institutional controls, such as monitoring or access restrictions?	No

Country: CUBA Reporting Year: 2007

Processing/Storage

	Policies/Procedures	(Yes;No)
Q73	waste sorting/segregation	Yes
Q74	waste minimization	Yes
Q75	waste storage	Yes
Q76	processing and/or storing and/or disposing of nuclear fuel cycle waste separately from non-nuclear fuel cycle waste (also known as nuclear applications waste)	No
Q78	Does your country have any legislation, regulation, or policy that waste processing must take place prior to storage (see following note)	Yes
Comme	ent #241: Procedures	

The centralized Waste Processing and Storage Facility has implemented a Quality Assurance programme including all these operations. A Safety Guide was issued for generators, explaining the way they have to manage radioactive wastes. There is not nuclear fuel cycle waste in the country.

	Implementation	(Yes;No)
Q80	In your Country are there any waste processing facilities at the same location where the waste is generated?	No
Q81	In your Country are there any centralized waste processing facilities?	Yes
Q82	In your Country are there any mobile waste processing facilities?	No
	Foreign	(Yes;No)
Q121	Has your country sent any wastes or spent fuel to another country for processing (reprocessing for fuel)?	No
Q124	Has your country accepted any wastes or spent fuel from another country for processing (reprocessing for fuel)?	No

Country: CUBA Reporting Year: 2007

Spent/Disused SRS

	Registration	(Yes;No)
Q84	Is there a national level registry?	Yes
Q85	If answer was yes, is the registry used only for disused/spent SRS?	Yes
Q87	Are there regional-level registries (one or more)?	No
Q90	Are there local-level registries (one or more)?	Yes
Q115	If the answer was yes, are any registries used only for disused/spent SRS?	Yes

	Procedures	(Yes;No)
Q91	Does your Country have documented procedures in place to ensure that sealed radioactive sources (SRS) are transferred to secure facilities in a timely manner after their user declares them to be spent?	Yes

Comment # 242: Spent SRS

The Regulation for the Safety of Radioactive Waste Management establishes in the Article 59: "The Licensee who imports a sealed radioactive source shall take the reasonable measures to return the source to the supplier once it has been declared disused. For this purpose, an agreement shall be signed between the Licensee and the Supplier. Should this not be the case, the disused sealed source shall be transferred to a waste management facility.

	Agreements	(Yes;No)
Q93	Government to Government agreements	No
Q94	Government - Supplier agreements	No
Q95	Supplier-User agreements	Yes
Q97	Do any agreements include suppliers that are outside of your Country?	Yes
Comme	ent # 243: Return the SRS	

The agreements for returning the spent sealed radiation sources to their supliers do not cover all the SRS that are in use at present.

	Release / Disposal	(Yes;No)
Q99	Does your Country have any regulations to free-release spent sealed radioactive sources (SRS)?	Yes
Q100	Has your Country disposed of spent SRS in existing disposal facilities for LILW or HLW waste?	No
Q101	Does your Country plan to dispose of spent SRS in existing or planned disposal facilities for LILW or HLW waste?	No
Q102	Has your Country implemented dedicated disposal facilities for spent SRS?	No
Q103	Does your Country have plans to implement dedicated disposal facilities for spent SRS?	No

Country: CUBA Reporting Year: 2007

Import-Export

Radioactive Waste	(Yes;No)
Nadioactive viaste	(103,140)

Q104 Does your Country have laws or Regulations restricting either the import or export of radioactive waste (excluding spent fuel)?

Yes

Comment # 244: Import of RadWaste

The Law 81, On the Environment, defined that the import of radioactive wastes required the authorization of the Minister of Science, Technology and Environment. The export is not covered in the Law.

Spent Fuel (Yes;No)

Q105 Does your Country have laws or Regulations restricting either the import or export of spent fuel?

No

Liquid HLW

Storage (Yes;No)

Q106 Does your Country have high-level liquid wastes in storage?

No

UMMT

Responsibility	(Y	es;No)

Q110 Does your Country have any Uranium Mine and Mill Tailings sites that do not have a designated authority to manage them?

No

Country: CUBA Reporting Year: 2007

Decommissioning

Funding (Yes - All; Yes - Some; No)

Q111 Does your Country require that funds should be set aside in support of future waste management activities, such as decommissioning activities?

Yes - Some

Comment # 245: Decommission

Decommissioning activities in the country are financed by the Government and the institutions where the decommissioning is carried out.

Facilities (Yes;No)

Q119 Does Your Country have any nuclear fuel cycle facilities?

No

Q120 Does Your Country have any nuclear applications facilities (non fuel cycle facilities)?

Yes

Timeframe (Yes - All; Yes - Some; No)

Q113 Does your Country require a time frame for the decommissioning of non-nuclear fuel cycle facilities once these facilities cease operation?

Yes - All

Comment # 7241: Time frame for decommissioning

Decommissioning activities performed up to now in the country have shown that the decommissioning of radioactive facilities could not be carried out inmediately after shutdown because the necessary resources were not available.

Country: CUBA Reporting Year: 2007

Country: CUBA Reporting Year: 2007